Home
Class 12
MATHS
int(-1)^(1) (1+x^(3))/(9-x^(2)) dx =...

`int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =`

A

`2/3 log 2`

B

`1/6 log 2`

C

`1/3 log 2`

D

`3/2 log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \frac{1 + x^3}{9 - x^2} \, dx \), we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx \] ### Step 1: Evaluate \( I \) using the property of symmetry First, we compute \( I \) by substituting \( -x \) into the integrand: \[ I = \int_{-1}^{1} \frac{1 + (-x)^3}{9 - (-x)^2} \, dx = \int_{-1}^{1} \frac{1 - x^3}{9 - x^2} \, dx \] ### Step 2: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{-1}^{1} \frac{1 + x^3}{9 - x^2} \, dx \) 2. \( I = \int_{-1}^{1} \frac{1 - x^3}{9 - x^2} \, dx \) Adding these two equations gives: \[ 2I = \int_{-1}^{1} \left( \frac{1 + x^3}{9 - x^2} + \frac{1 - x^3}{9 - x^2} \right) \, dx \] ### Step 3: Simplify the integrand The integrand simplifies as follows: \[ \frac{1 + x^3 + 1 - x^3}{9 - x^2} = \frac{2}{9 - x^2} \] Thus, we have: \[ 2I = \int_{-1}^{1} \frac{2}{9 - x^2} \, dx \] ### Step 4: Factor out the constant We can factor out the constant \( 2 \): \[ 2I = 2 \int_{-1}^{1} \frac{1}{9 - x^2} \, dx \] Dividing both sides by 2 gives: \[ I = \int_{-1}^{1} \frac{1}{9 - x^2} \, dx \] ### Step 5: Solve the integral To solve \( \int_{-1}^{1} \frac{1}{9 - x^2} \, dx \), we can use the formula for the integral of the form \( \int \frac{1}{a^2 - x^2} \, dx \): \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \] In our case, \( a^2 = 9 \) so \( a = 3 \). Thus, we have: \[ \int \frac{1}{9 - x^2} \, dx = \frac{1}{6} \ln \left| \frac{3 + x}{3 - x} \right| + C \] ### Step 6: Evaluate the definite integral Now we evaluate from \( -1 \) to \( 1 \): \[ I = \left[ \frac{1}{6} \ln \left| \frac{3 + x}{3 - x} \right| \right]_{-1}^{1} \] Calculating at the limits: 1. At \( x = 1 \): \[ \frac{1}{6} \ln \left| \frac{3 + 1}{3 - 1} \right| = \frac{1}{6} \ln \left| \frac{4}{2} \right| = \frac{1}{6} \ln 2 \] 2. At \( x = -1 \): \[ \frac{1}{6} \ln \left| \frac{3 - 1}{3 + 1} \right| = \frac{1}{6} \ln \left| \frac{2}{4} \right| = \frac{1}{6} \ln \frac{1}{2} = -\frac{1}{6} \ln 2 \] ### Step 7: Combine the results Now we combine the results: \[ I = \frac{1}{6} \ln 2 - \left(-\frac{1}{6} \ln 2\right) = \frac{1}{6} \ln 2 + \frac{1}{6} \ln 2 = \frac{2}{6} \ln 2 = \frac{1}{3} \ln 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-1}^{1} \frac{1 + x^3}{9 - x^2} \, dx = \frac{1}{3} \ln 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)(x^(3)dx)/(x^(2)+1)

Evaluate : int_(1)^(2)(x^(3)-1)/(x^(2))dx

int_(-1)^(1)x^(3)|x|dx

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

int_(-1)^(1)3x^(2)dx

int_(-1)^(-2)x^(3)(1-x^(2))dx=?

int(1)/(9-4x^(2))dx

int_(0)^(1)(1-x)^(9)dx=

int_(-1)^(2)|x^(3)-x|dx

l_(1)=int_(0)^(1)(1+x^(8))/(1+x^(4))dx and l_(2)=int_(0)^(1)(1+x^(9))/(1+x^(3))dx