Home
Class 12
MATHS
int(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^...

`int_(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^(2))) dx =`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{-1}^{1} \left( \sqrt{1+x+x^2} - \sqrt{1-x+x^2} \right) \, dx, \] we will analyze the integrand to determine if it is an odd function. ### Step 1: Define the function Let \[ f(x) = \sqrt{1+x+x^2} - \sqrt{1-x+x^2}. \] ### Step 2: Check for oddness To check if \( f(x) \) is an odd function, we need to compute \( f(-x) \): \[ f(-x) = \sqrt{1 + (-x) + (-x)^2} - \sqrt{1 - (-x) + (-x)^2}. \] This simplifies to: \[ f(-x) = \sqrt{1 - x + x^2} - \sqrt{1 + x + x^2}. \] ### Step 3: Rearranging \( f(-x) \) Now, we can rearrange \( f(-x) \): \[ f(-x) = -\left( \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2} \right) = -f(x). \] ### Step 4: Conclusion about odd function Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 5: Apply the property of definite integrals For an odd function integrated over a symmetric interval about zero, the integral evaluates to zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] Thus, we have: \[ I = \int_{-1}^{1} f(x) \, dx = 0. \] ### Final Answer Therefore, the value of the definite integral is \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-4)^(4)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx is

int_(1)^(2)sqrt(1+x)dx

int(1)/(1-x^(2)) sqrt(1-x^(2))dx

int(2x+1)sqrt(1-x-x^(2))dx

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

int_(0)^(1//sqrt(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx=

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

Evaluate: int_(0)^(1)(1)/(sqrt(1-x^(2)))sin^(-1)(2x sqrt(1-x^(2)))dx