Home
Class 12
MATHS
int(-pi//2) ^(pi//2)sin^(3) xdx=...

`int_(-pi//2) ^(pi//2)sin^(3) xdx=`

A

`pi/4`

B

`pi/2`

C

0

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \, dx \), we will follow these steps: ### Step 1: Define the Integral Let \( A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \, dx \). ### Step 2: Determine if the Function is Odd or Even We need to check whether the function \( f(x) = \sin^3 x \) is odd or even. - A function \( f(x) \) is odd if \( f(-x) = -f(x) \). - Calculate \( f(-x) \): \[ f(-x) = \sin^3(-x) = (-\sin x)^3 = -\sin^3 x = -f(x) \] Thus, \( f(-x) = -f(x) \), which means \( f(x) = \sin^3 x \) is an odd function. ### Step 3: Apply the Property of Odd Functions The property of definite integrals states that if \( f(x) \) is an odd function, then: \[ \int_{-a}^{a} f(x) \, dx = 0 \] for any \( a \). ### Step 4: Conclude the Integral Since \( \sin^3 x \) is an odd function and we are integrating over the symmetric interval from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \): \[ A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Show that int_(-pi//2)^(pi//2)sin^(7)xdx=0 .

int_(-pi/2)^(pi/2)sin xdx

int_(-pi/2)^( pi/2)sin^(5)xdx

Evaluate int_(-pi/2)^(pi/2) sin^2xdx

int_(-(pi)/(2))^(pi/2)x sin^(2)xdx

int_(-pi/4)^(pi/4)sin^(2) xdx

int_(-pi/3)^( pi/3)sin^(2)xdx=?

int_(-pi/2)^( pi/2)x^(2)sin xdx

Find the value of int_(-pi/4)^( pi)sin^(2)xdx

int_(0)^( pi/2)sin^(3)x cos xdx=?