Home
Class 12
MATHS
int(-pi//2)^(pi//2) sqrt((1-cos2x)/2)dx ...

`int_(-pi//2)^(pi//2) sqrt((1-cos2x)/2)dx = `

A

0

B

2

C

`1/2`

D

`(-1)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1 - \cos 2x}{2}} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand Using the trigonometric identity \( \cos 2x = 1 - 2\sin^2 x \), we can rewrite \( 1 - \cos 2x \) as follows: \[ 1 - \cos 2x = 2\sin^2 x. \] Thus, we have: \[ \sqrt{\frac{1 - \cos 2x}{2}} = \sqrt{\frac{2\sin^2 x}{2}} = \sqrt{\sin^2 x} = |\sin x|. \] ### Step 2: Determine the behavior of \(|\sin x|\) over the interval On the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\), \(\sin x\) is non-negative, so \(|\sin x| = \sin x\). Therefore, we can rewrite the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dx. \] ### Step 3: Evaluate the integral Now we can evaluate the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dx. \] Since \(\sin x\) is an odd function, we can use the property of definite integrals for odd functions: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd.} \] In this case, since \(\sin(-x) = -\sin x\), we conclude that: \[ I = 0. \] ### Final Answer Thus, the value of the definite integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1 - \cos 2x}{2}} \, dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2)sqrt(1-cos 2x)dx=

The value of the integral int_(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx is

int_(pi//4)^(pi//2)(dx)/((1-cos2x))

The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Evaluate int_(-pi//2)^(pi//2) sqrt(cosx-cos^(3)x)dx .

int_(0)^(200 pi) sqrt((1-cos2x)/(2))dx=