Home
Class 12
MATHS
If int(0)^(pi//2) log(cosx) dx=pi/2 log ...

If `int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2),` then
`int_(0) ^(pi//2) log (sec x ) dx = `

A

`pi/2 log (1/2)`

B

`1-pi/2 log (1/2)`

C

`1+pi/2 log (1/2)`

D

`pi/2 log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx \) given that \( \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx = \frac{\pi}{2} \log\left(\frac{1}{2}\right) \). ### Step-by-Step Solution: 1. **Understanding the Relationship**: We know that \( \sec x = \frac{1}{\cos x} \). Therefore, we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{\cos x}\right) \, dx \] 2. **Using Logarithmic Properties**: Using the property of logarithms \( \log\left(\frac{1}{a}\right) = -\log(a) \), we can simplify: \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = \int_{0}^{\frac{\pi}{2}} -\log(\cos x) \, dx \] This can be expressed as: \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = -\int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx \] 3. **Substituting the Given Value**: We know from the problem statement that: \[ \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx = \frac{\pi}{2} \log\left(\frac{1}{2}\right) \] Therefore, substituting this value into our equation gives: \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = -\left(\frac{\pi}{2} \log\left(\frac{1}{2}\right)\right) \] 4. **Simplifying the Expression**: We can simplify \( \log\left(\frac{1}{2}\right) \): \[ \log\left(\frac{1}{2}\right) = -\log(2) \] Thus, we have: \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = -\left(\frac{\pi}{2} \cdot -\log(2)\right) = \frac{\pi}{2} \log(2) \] 5. **Final Result**: Therefore, the value of the integral \( \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx \) is: \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = \frac{\pi}{2} \log(2) \] ### Conclusion: The final answer is: \[ \int_{0}^{\frac{\pi}{2}} \log(\sec x) \, dx = \frac{\pi}{2} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log (cotx ) dx=

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

int_(0)^((pi)/(2))log(cos x)dx=

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^( pi)log(1+cos x)dx

int_(0)^(pi//4) log (1+tan x) dx =?

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

If int_(0)^((pi)/(2))logcosxdx=(pi)/(2)log((1)/(2)) , then int_(0)^((pi)/(2))logsecdx=