Home
Class 12
PHYSICS
An artificial satellite is orbiting at a...

An artificial satellite is orbiting at a height of 1800 km from the earth's surface. The earth's radius is 6300 km and `g=10m/s^(2)` on its surface. What is the radial acceleration of the satellite?

A

`6m//s^(2)`

B

`7m//s^(2)`

C

`8m//s^(2)`

D

`9m//s^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the radial acceleration of the satellite orbiting the Earth at a height of 1800 km, we can follow these steps: ### Step 1: Identify the given data - Height of the satellite (H) = 1800 km = 1800 × 10^3 m = 1.8 × 10^6 m - Radius of the Earth (R) = 6300 km = 6300 × 10^3 m = 6.3 × 10^6 m - Acceleration due to gravity at the Earth's surface (g) = 10 m/s² ### Step 2: Calculate the total distance from the center of the Earth to the satellite The total distance (r) from the center of the Earth to the satellite is the sum of the Earth's radius and the height of the satellite: \[ r = R + H = 6.3 \times 10^6 \, \text{m} + 1.8 \times 10^6 \, \text{m} = 8.1 \times 10^6 \, \text{m} \] ### Step 3: Use the formula for gravitational acceleration at a distance r from the center of the Earth The gravitational acceleration (g') at distance r from the center of the Earth can be calculated using the formula: \[ g' = \frac{g \cdot R^2}{r^2} \] Substituting the known values: \[ g' = \frac{10 \, \text{m/s}^2 \cdot (6.3 \times 10^6 \, \text{m})^2}{(8.1 \times 10^6 \, \text{m})^2} \] ### Step 4: Calculate the values Calculating \( R^2 \) and \( r^2 \): - \( R^2 = (6.3 \times 10^6)^2 = 39.69 \times 10^{12} \, \text{m}^2 \) - \( r^2 = (8.1 \times 10^6)^2 = 65.61 \times 10^{12} \, \text{m}^2 \) Now substituting these values into the equation for g': \[ g' = \frac{10 \cdot 39.69 \times 10^{12}}{65.61 \times 10^{12}} \] \[ g' = \frac{396.9}{65.61} \approx 6.05 \, \text{m/s}^2 \] ### Step 5: Conclusion The radial (centripetal) acceleration of the satellite is approximately: \[ a = g' \approx 6.05 \, \text{m/s}^2 \]

To find the radial acceleration of the satellite orbiting the Earth at a height of 1800 km, we can follow these steps: ### Step 1: Identify the given data - Height of the satellite (H) = 1800 km = 1800 × 10^3 m = 1.8 × 10^6 m - Radius of the Earth (R) = 6300 km = 6300 × 10^3 m = 6.3 × 10^6 m - Acceleration due to gravity at the Earth's surface (g) = 10 m/s² ### Step 2: Calculate the total distance from the center of the Earth to the satellite ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROSTATICS

    NIKITA PUBLICATION|Exercise Multiple Choice Questions|458 Videos
  • INTERFERENCE AND DIFFRACTION

    NIKITA PUBLICATION|Exercise MULTPLE CHOICE QUESTIONS|333 Videos

Similar Questions

Explore conceptually related problems

An artificial satellite is orbiting at a height of 1800 km from the surface of earth. What is speed of the satellite ? (R = 6300 km)

An artificial satellite is at a height of 36,500 km above earth's surface. What is the work done by earth's gravitational force in keeping it in its orbit ?

An artificial satellite is revolving in a circular orbit at a height of 600 km from the earth's surface. If its time of revolution be 100 minutes, calculate the acceleration due to gravity acting on it towards the earth. Radius of earth = 6.4 xx 10^(6) m

An artificial satellite is revolving in a circular orbit at height of 1200 km above the surface of the earth. If the radius of the earth is 6400 km and mass is 6xx10^(24) kg , the orbital velocity is

An artificial satellite is revolving around the Earth at a height 400 km from the Earth's surface . If a packet is released from the satellite, what will happen ti it? Will it reach the Earth?

An artificial satellite is describing an equatorial orbit at 3600 km above the earth's surface. Calculate its period of revolution? Take earth radius 6400km .

A remote sensing satellite of the earth revolves in a circular orbit at a height of 250 km above the earth's surface. What is the (i) orbital speed and (ii) period of revolution of the satellite ? Radius of the earth, R=6.38xx10^(6) m, and acceleration due to gravity on the surface of the earth, g=9.8 ms^(-2) .

If height of a satellite from the surface of earth is increased , then its

A geostationary satellite orbits the earth at a height of nearly 36,000 km from the surface of the earth. What is the potential due to earth's gravity at the site of the satellite ? Mass of the earth= 6xx10^(24) kg and radius =6400 km.

NIKITA PUBLICATION-GRAVITATION-Multiple Choice Questions
  1. If the earth suddenly shrinks (without changing mass) to half of its p...

    Text Solution

    |

  2. If omega is the angular velocity of rotation of the earth about its ax...

    Text Solution

    |

  3. An artificial satellite is orbiting at a height of 1800 km from the ea...

    Text Solution

    |

  4. A satellite revolving round the earth in a circular orbit with orbital...

    Text Solution

    |

  5. A body weighs W newton at the surface of the earth. Its weight at a he...

    Text Solution

    |

  6. A hole is drilled half - way to the centre of the earth. A body weighs...

    Text Solution

    |

  7. Radius of earth is around 6000 km . The weight of body at height of 60...

    Text Solution

    |

  8. An object weighs 20 N at the north pole of the earth. In a satellite, ...

    Text Solution

    |

  9. The height of the point vertically above the earth's surface, at which...

    Text Solution

    |

  10. If the acceleration due to gravity at a height 'h' from the surface of...

    Text Solution

    |

  11. The reduction in acceleration due to gravity at height equal to the ra...

    Text Solution

    |

  12. If R is the radius of the earth , the height from its surface at which...

    Text Solution

    |

  13. If R is the radius of the earth, the height at which g will decrease b...

    Text Solution

    |

  14. The weights of two objects one lying at the equator and the other at l...

    Text Solution

    |

  15. Acceleration due to gravity at a depth equal to half the radius of ear...

    Text Solution

    |

  16. The weight of a body on the suface of the earth is 100 N. The same at ...

    Text Solution

    |

  17. The ratio of the binding energies of a stationary body at height equal...

    Text Solution

    |

  18. Artificial satellite moving around the earth is just like a

    Text Solution

    |

  19. Velocity of geostationary satellite relative to the earth is

    Text Solution

    |

  20. Which of the following quantities remain constant in a planetary motio...

    Text Solution

    |