Home
Class 12
MATHS
If f(x)=(1+x)^n, then the value of f(0)...

If `f(x)=(1+x)^n,` then the value of `f(0)+f^(prime)(0)+(f^('')(0))/(2!)+(f^(''')(0))/(3!)+......(f^n(0))/(n !)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1+x)^2, then the value of f(x0)+f^(prime)(0) +(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot

If f(x)=(1+x)^2, then the value of f(x0)+f^(prime)(0) +(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot

If f(x)=(1+x)^(n), then the value of f(0)+f'(0)+(f^(n)(0))/(2!)+(f'''(0))/(3!)+......(f^(n)(0))/(n!)

If f(x)= (1 + x)^n then the value of f(0) + f'(0) + (f''(0))/(2!) + .... + (f^n(0))/(n!) is

If f(x)=(1-x)^(n) , then the value of f(0)+f'(0)+(f''(0))/(2!)+...+(f^(n)(0))/(n!) , is

If f(x) = (1 - x)^n then the value of f(0) + f'(0) + (f^('')(0))/(2!) + ….+ (f^('')(0))/(n!) is equal to

If f(x)=(2011 + x)^(n) , where x is a real variable and n is a positive interger, then value of f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!) is -f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!) is -

If f : R to R is given f (x) = x +1, then the value of lim _( b - oo) (1)/(n) [ f (0) + f ((5)/(n)) + f ((10)/(n)) +...+ f ((5 ( n -1))/( n )) ], is :