Home
Class 12
MATHS
The value of lim(n->oo) sum(r=n^2)^(n^...

The value of `lim_(n->oo) sum_(r=n^2)^(n^2+9+6n) 1/sqrtr` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of lim_(n rarr oo)(n^(-3/2)) sum_(j=1)^(6n) sqrt(j) is equal to sqrt(N) , then the value of N/(12) is __________

If the value of lim_(n rarr oo)(n^(-3/2)) sum_(j=1)^(6n) sqrt(j) is equal to sqrt(N) , then the value of N/(12) is __________

If the value of lim_(n rarr oo)(n^(-3/2)) sum_(j=1)^(6n) sqrt(j) is equal to sqrt(N) , then the value of N/(12) is __________

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

If the value of lim_(n to oo) (n^(-3//2)) . sum_(j=1)^(6n)sqrt(j) is equal to sqrt(N) , then the value of N is________.

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals