Home
Class 12
MATHS
Let RR be the set of real numbers . If t...

Let `RR` be the set of real numbers . If the functions `f:RR rarr RR ` and `g: RR rarr RR` be defined by , `f(x)=3x+2` and `g(x) =x^(2)+1`, then find ( g o f) and (f o g) .

Text Solution

Verified by Experts

The correct Answer is:
`=3x^(2) +5`
Promotional Banner

Topper's Solved these Questions

  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|12 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2A ( very short answer type questions)|22 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Long Answer Type Question|12 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos

Similar Questions

Explore conceptually related problems

Let f:RR rarr RR and g: RR rarr RR be two mapping defined by f(x)=2x+1 and g(x)=x^(2)-2 , find (g o f) and (f o g).

let the functions f: RR rarr RR and g: RR rarr RR be defined by f(x)=3x+5 and g(x)=x^(2)-3x+2 . Find (i)(g o f) (x^(2)-1), (ii) (f o g )(x+2)

Let the functions f: RR rarr RR and g: RR rarr RR be defined by f(x)=x+1 and g(x)=x-1 Prove that , (g o f)=(f o g)=I_(RR)

Let the function f:RR rarr RR and g: RR rarr RR be defined by f(x)=x^(2) and g(x)=x+3, evaluate (f o g) (2) , (ii) (g o f) (3)

Let RR be the set of real numbers and the functions f: RR to RR and g : RR to RR be defined by f(x ) = x^(2)+2x-3 and g(x ) = x+1 , then the value of x for which f(g(x)) = g(f(x)) is -

Let the function f:RR rarr RR and g:RR be defined by f(x) = sin x and g(x)=x^(2) . Show that, (g o f) ne (f o g) .

Let RR be the set of real numbers and the mapping f: RR rarr RR and g: RR rarr RR be defined by f(x)=5-x^(2) and g(x) =3x -4 , state which of the following is the value of (f o g) (-1) ?

Let RR be the set of real numbers and f: RR rarr RR , g:RR rarr RR be defined by f(x) =5|x|-x^(2) and g(x) =2x-3 Compute (i) (g o f) (-2) (ii) (f o g) (-1) (iii) (g o f)(5) (iv) (f o g )(5)

Let RR be the set of real numbers and the mapping f: RR rarr RR be defined by f(x)=2x^(2) , then f^(-1) (32)=

Let RR be the set of real numbers and f: RR rarr RR ,g: RR rarr RR be two functions such that, (g o f) (x) = 4x^(2)+4x+1 and (f o g ) (x) = 2x^(2)+1 . Find f(x) and g(x) .