Home
Class 12
MATHS
Let the function f:RR rarr RR and g:RR ...

Let the function `f:RR rarr RR and g:RR ` be defined by `f(x) = sin x and g(x)=x^(2)`. Show that, `(g o f) ne (f o g) `.

Promotional Banner

Topper's Solved these Questions

  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 B ( short answer type questions )|9 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 C|5 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 B|6 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Long Answer Type Question|12 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos

Similar Questions

Explore conceptually related problems

Let the functions f: RR rarr RR and g: RR rarr RR be defined by f(x)=x+1 and g(x)=x-1 Prove that , (g o f)=(f o g)=I_(RR)

Let RR be the set of real numbers . If the functions f:RR rarr RR and g: RR rarr RR be defined by , f(x)=3x+2 and g(x) =x^(2)+1 , then find ( g o f) and (f o g) .

let the functions f: RR rarr RR and g: RR rarr RR be defined by f(x)=3x+5 and g(x)=x^(2)-3x+2 . Find (i)(g o f) (x^(2)-1), (ii) (f o g )(x+2)

Let the function f:RR rarr RR and g: RR rarr RR be defined by f(x)=x^(2) and g(x)=x+3, evaluate (f o g) (2) , (ii) (g o f) (3)

Let f:RR rarr RR and g: RR rarr RR be two mapping defined by f(x)=2x+1 and g(x)=x^(2)-2 , find (g o f) and (f o g).

Let the functions f: RR rarr RR and g: RR rarr RR be given by f(x)=3x-2 and g(x)=3|x|-x^(2) . Find (i) (g o f) (-1) , (ii) (f o g) (-2) , (iii) (g o f) (3), (iv) ( f o g) (4)

Let the function f:RR rarr RR be defined by , f(x)=3x-2 and g(x)=3x-2 (RR being the set of real numbers), then (f o g)(x)=

Let the function f: RR rarr RR and g: RR rarr RR be defined by, f(x) =x^(2)-4x+3 and g(x)=3x-2 . Find formulas which define the composite functions (i) f o f (ii) g o g (iii) f o g and (iv) g o f

Let the functions f and g on the set of real numbers RR be defined by, f(x)= cos x and g(x) =x^(3) . Prove that, (f o g) ne (g o f).

Let the functions f: QQ rarr QQ and g: QQ rarr QQ be defined by, f(x)=3x and g(x)=x+3 . Assuming that f and g are both invertible , verify that , ( g o f) ^(-1) =(f^(-1) o g ^(-1)) .