Home
Class 12
MATHS
let the functions f: RR rarr RR and g: R...

let the functions `f: RR rarr RR and g: RR rarr RR` be defined by `f(x)=3x+5 and g(x)=x^(2)-3x+2`. Find
`(i)(g o f) (x^(2)-1), (ii) (f o g )(x+2)`

Text Solution

Verified by Experts

The correct Answer is:
(i) `9x^(4)+3x^(2)` , (ii) `3(x^(2)+x) +5`
Promotional Banner

Topper's Solved these Questions

  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 C|5 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 C ( Vary short answer quations)|8 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 B (Very short answer type questions )|10 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Long Answer Type Question|12 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos

Similar Questions

Explore conceptually related problems

Let the functions f: RR rarr RR and g: RR rarr RR be given by f(x)=3x-2 and g(x)=3|x|-x^(2) . Find (i) (g o f) (-1) , (ii) (f o g) (-2) , (iii) (g o f) (3), (iv) ( f o g) (4)

Let the functions f: RR rarr RR and g: RR rarr RR be defined by f(x)=x+1 and g(x)=x-1 Prove that , (g o f)=(f o g)=I_(RR)

Let RR be the set of real numbers . If the functions f:RR rarr RR and g: RR rarr RR be defined by , f(x)=3x+2 and g(x) =x^(2)+1 , then find ( g o f) and (f o g) .

Let the function f:RR rarr RR and g: RR rarr RR be defined by f(x)=x^(2) and g(x)=x+3, evaluate (f o g) (2) , (ii) (g o f) (3)

Let the function f:RR rarr RR and g:RR be defined by f(x) = sin x and g(x)=x^(2) . Show that, (g o f) ne (f o g) .

Let f:RR rarr RR and g: RR rarr RR be two mapping defined by f(x)=2x+1 and g(x)=x^(2)-2 , find (g o f) and (f o g).

Let RR be the set of real numbers and f: RR rarr RR , g:RR rarr RR be defined by f(x) =5|x|-x^(2) and g(x) =2x-3 Compute (i) (g o f) (-2) (ii) (f o g) (-1) (iii) (g o f)(5) (iv) (f o g )(5)

Let the mapping f: A rarr B and g: B rarr C be defined by f(x)=5/x -1 and g(x)=2+x Find the product mapping ( g o f ).

Let the function f: RR rarr RR and g: RR rarr RR be defined by, f(x) =x^(2)-4x+3 and g(x)=3x-2 . Find formulas which define the composite functions (i) f o f (ii) g o g (iii) f o g and (iv) g o f

Let RR be the set of real numbers and the mapping f: RR rarr RR and g: RR rarr RR be defined by f(x)=5-x^(2) and g(x) =3x -4 , state which of the following is the value of (f o g) (-1) ?