Home
Class 12
MATHS
Let the function f: RR rarr RR be define...

Let the function `f: RR rarr RR` be defined by `f(x)=x^(2)-2`. Find (i)` f^(-1) {-1,7} ,(ii) f^(-1) {2 le xle 34}` , (iii) `f^(-1) {-5 le xle 14}` (iv) `f^(-1){-6 le xle -2}` ,(v) `f^(-1) { - infty lt x le 2}`.

Text Solution

Verified by Experts

The correct Answer is:
(i) `{-3,-1,1,3}` (ii) `{x in RR :-6 le x le -2 or 2 le x le 6}` , (iii) `{ x in RR : -4 le x le 4}` (iv) {0} ,(v) `{x in RR : -2 le xle 2}`
Promotional Banner

Topper's Solved these Questions

  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 C ( short answer quations)|8 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions|5 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 C|5 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Long Answer Type Question|12 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos

Similar Questions

Explore conceptually related problems

Let RR be the set of real numbers and f:RR rarr RR be given by f(x)=x^(2) +2 . Find (i) f^(-1){11,16} (ii) f^(-1) {11 le x le 27} (iii) f^(-1) {0 le x le 6} (iv) f^(-1) {-2 le xle 2} (v) f^(-1) {- infty lt x le 4}

Let the function f: RR rarr RR be given by , f(x)=3x^(2)-14x+10 . Find (i) f^(-1)(4), (ii) f^(-1) (-8)

Let the function f: RR rarr RR be defined by, f(x) =x^(2), . Find (i) f^(-1) (25) , (ii) f^(-1) (5) , (iii) f^(-1) (-5)

Let t the function f:RR to RR be defined by, f(x)=a^x(a gt0 ,a ne1). Find range of f

Let the function f:RR rarr RR be defined by f(x)=x^(2) (RR being the set of real numbers), then f is __

Let RR be the set of real numbers and f:RR rarr RR be defined by , f(x)=2x^(2)-5x+6 .Find f^(-1)(5) and f^(-1)(2)

Let RR be the set of real numbers and f: RR rarr RR be defined by , f(x) =x^(3) +1 , find f^(-1)(x)

let the functions f: RR rarr RR and g: RR rarr RR be defined by f(x)=3x+5 and g(x)=x^(2)-3x+2 . Find (i)(g o f) (x^(2)-1), (ii) (f o g )(x+2)

Let RR be the set of real numbers and the mapping f: RR rarr RR be defined by f(x)=2x^(2) , then f^(-1) (32)=

If the function f: R to R is defined by f(x) =(x^(2)+1)^(35) for all x in RR then f is