Home
Class 12
MATHS
Let f(x){(0,"for" x=0),(x^(2) "sin"(pi)/...

Let `f(x){(0,"for" x=0),(x^(2) "sin"(pi)/(x),"for "-1 lt xlt1"," (x ne 0) " then"__),(x|x|, "for" x ge 1 or le -1):}`

A

`f(x)` is an odd function

B

`f(x)` is an even function

C

`f(x)` is an either odd nor even

D

`f'(x)` is an even function

Text Solution

Verified by Experts

The correct Answer is:
a,d
Promotional Banner

Topper's Solved these Questions

  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Integer anawer type B)|5 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Matrix Match type C)|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise EXERCISE 2 C ( short answer quations)|8 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Long Answer Type Question|12 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(x^(2)",","for "x ge1),(x",","for "x lt 0):} , then fof(x) is given by

Let f(x)={(0", if"-1 le x lt 0),(1", if "x =0),(2", if "0 lt x le1):} and let F(x)= int_(-1)^(x) f(t) dt, -1 le x le 1 , then

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

Let f(x)={(absx, "for",0ltabsxlt=2),(1, "for",x=0):} Then ,at x = 0, f(x) has

If f(x)={(x"sin"(1)/(x),"when "x ne 0),(0,"when "x =0):} then at x = 0, the function f(x) is -

Let f(x)={(x^2|cos"pi/x|, x ne0),(0, x=0):} , x in R , then f is

Let f(x) = {{:(x^(2) + 3x",", -1 le x lt 0),(-sin x",", 0 le x lt pi//2),(-1 - cos x",", (pi)/(2) le x le pi):} . Draw the graph of the function and find the following (a) Range of the function (b) Point of inflection (c) Point of local minima

Let f(x)={{:(x+1", "xgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):} Find the LHL and RHL of g(f(x)) at x=0 and, hence, find lim_(xto0) g(f(x)).

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then