Home
Class 12
MATHS
Prove that an operation ** on RR, the se...

Prove that an operation `**` on `RR`, the set of real numbers, defined by `x**y=2xy+sqrt5,` for all `x,yinRR`, is a binary operation on `RR`.

Promotional Banner

Topper's Solved these Questions

  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise EXERCISE 3(MCQs)|9 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise EXERCISE 3(Very Short Answer Type Questions)|22 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos
  • BINOMIAL DISTRUTION

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

Show that an operation ** on RR , the set of real numbers, defined by a**b=3ab+sqrt2, for all a,binRR . Is a binary operaion on RR.

An operation ** is defined on the set of real numbers RR by a**b=ab+5 for all a,binRR . Is ** a binary operation on RR ?.

let ** be a binary operation on RR , the set of real numbers, defined by a@b=sqrt(a^(2)+b^(2)) for all a,binRR . Prove that the binary operation @ is commutative as well as associative.

Let @ be an operation defined on RR . The set of real numbers, by a@b=min(a,b) for all a,binRR . Show that @ is a binary operation on RR .

Prove that the operation ^^ on RR defined by x^^y= min. of x and y for all x,yinRR is a binary operation on RR .

Prove that the operation @ on QQ , the set of rational numbers, defined by a@b=ab+1 is binary operational on QQ .

Let ** be an operation defined on NN , the set of natural numbers, by a**b=L.C.M.(a,b) for all a,binNN . Prove that ** is a binary operation on NN .

Prove that the operation ** on ZZ defined by a**b=a|b| for all a,binZZ is a binary operation

An operation ** on ZZ , the set of integers, is defined as, a**b=a-b+ab for all a,binZZ . Prove that ** is a binary operation on ZZ which is neither commutative nor associative.

A binary operation ** is defined on the set of real numbers RR by a**b=2a+b-5 for all a,bin RR . If 3**(x-2)=20 find x.