Home
Class 12
MATHS
Let S=NNxxNNand** is a binary operation ...

Let `S=NNxxNNand**` is a binary operation on S defined by
`(a,b)**(c,d)=(a+c,b+d)` for all `a,b,c,d in NN`.
Prove that `**` is a commutative and associative binary operation on S.

Promotional Banner

Topper's Solved these Questions

  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise EXERCISE 3(MCQs)|9 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise EXERCISE 3(Very Short Answer Type Questions)|22 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos
  • BINOMIAL DISTRUTION

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

Let S = N xx N and ast is a binary operation on S defined by (a,b)^**(c,d) = (a+c, b+d) for all a,b,c,d in N .Prove that ** is an associate binary operation on S.

Let A=NNxxNNand@ be a binary operation on A defined by (a,b)@(c,d)=(ac,bd) for all a,b,c,dinNN . Discuss the commutativity and associativity of @ on A.

** on ZZxxZZ defined by (a,b)**(c,d)=(a-c,b-d) for all (a,b),(c,d)inZZxxZZ.

Let A=Ncup{0}xxNNcup{0}, a binary operation ** is defined on A by. (a,b)**(c,d)=(a+c,b+d) for all (a,b),(c,d)inA. Prove that ** is commutative as well as associative on A. Show also that (0,0) is the identity element In A.

Let A = N xx N and ** be the binary opertion on A defined by (a,b) ** (c,d) = (a + c, b+d) Show that ** is commutative and associative.

Let ** be a binary operation on A=NNxxNN , defined by, (a,b)**(c,d)=(ad+bc,bd) for all (a,b)(c,d)inA . Prove that A=NNxxNN has no identity element.

(I) Let ** be a binary operation defined by a**b=2a+b-3. Find 3**4. (ii) let ** be a binary operation on RR-{-1} , defined by a**b=(1)/(b+1) for all a,binRR-{-1} Show that ** is neither commutative nor associative. (iii) Let ** be a binary operation on the set QQ of all raional numbers, defined as a**b=(2a-b^(2)) for all a,binQQ . Find 3**5 and 5**3 . Is 3**5=5**3?

Let A=NNxxNN , a binary operation ** is defined on A by (a,b)**(c,d)=(ad+bc,bd) for all (a,b),(c,d)inA. Show that ** possesses no identity element in A.

Let A=N x N and *be a binary operation on A defined by (a,b)*(c,d) =(a+c,b+d).Show(A*) has on identity element.

Define an associative binary operation on a non-empty set S.