Home
Class 12
MATHS
If "cosec" ^(-1) x = sin ^(-1) ((1)/(...

If `"cosec" ^(-1) x = sin ^(-1) ((1)/(x))` then x may be -

A

1

B

`-(1)/(2)`

C

`(3)/(2)`

D

`-(3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC INVERSE CIRCULAR FUNCTIONS

    CHHAYA PUBLICATION|Exercise Long answer type questions|28 Videos
  • TRANSFORMATIONS OF SUMS AND PRODUCTS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

2 sin ^(-1 ) x= cos ^(-1) x

sin "cosec"^(-1) cot (tan^(-1)x) =x

Knowledge Check

  • If y="cosec"^(-1)((x+1)/(x-1))+cos^(-1)((x-1)/(x+1)) , then (dy)/(dx) is equal to -

    A
    1
    B
    `pi`
    C
    0
    D
    `(pi)/(2)`
  • If sec^(-1) x = "cosec" ^(-1) y , then the valuw of cos^(-1) ""(1)/(x) - sin ^(-1)""(1)/(y) will be

    A
    0
    B
    `(2 pi)/(3)`
    C
    `(5pi)/(6)`
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    Solve sec^(-1) x gt cosec^(-1) x

    sin^(-1)x+sin ^(-1)""2x=(pi)/(3)

    Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

    sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

    Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

    { cos (sin ^(-1) x)}^(2) ={sin (cos ^(-1) x)}^(2)