Home
Class 12
MATHS
If A^(-1) = [(1,3,2),(-3,-3,-1),(2,1,0)]...

If `A^(-1)` = `[(1,3,2),(-3,-3,-1),(2,1,0)]`, find A.

Text Solution

Verified by Experts

The correct Answer is:
`because` |A| = 1 `therefore` A is proper orthogonal matrix.
Promotional Banner

Topper's Solved these Questions

  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise MULTIPLE CHOICE TYPE QUESTIONS|9 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTIONS|38 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos

Similar Questions

Explore conceptually related problems

Using elementary row operations, find the inverse of the matrix [{:(1,3,2),(-3,-3,-1),(2,1,0):}] .

If A^(-1) = ((3,1),(-1,2)) ,find A.

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

If A={:[(1,1),(2,2),(3,3)], find "AA"^(T).

If A={:[(2,0,1),(1,0,-1),(0,-1,1)]:}, find the matrix for the polynomial A^(2)-4A+3I.

If A=[(1,1,-1),(2,0,3),(3,-1,2)],B=[(1,3),(0,2),(-1,4)] and C=[(1,2,3,-4),(2,0,-2,1)] , find A(BC), (AB)C and show that (AB)C=A(BC) .

If A={:[(1,2,1),(1,-1,1),(2,3,-1)]and B={:[(1,4,0),(-1,2,2),(0,0,2)], find the matrix AB - 2B.

If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0

Let A be a 3xx3 matric such that A . [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .