Home
Class 12
MATHS
If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):})...

If `A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):})`, show that `"AA"^(T)=I_(3)`.

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBHS ARCHIVE 2015|7 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBHS ARCHIVE 2016|7 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBHS ARCHIVE 2013|5 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0

Show that A=(1)/(3)[{:(-1,2,-2),(-2,1,2),(2,2,1):}] is proper orthogonal matrix.

If the matrix A=1/3 {:((a,2,2),(2,1,b),(2,c,1)):} obeys the law "AA"'=I, find a,b,and c (Here A' is the transpose of A and I is the unit matrix of order 3).

If P={:[(2,-2,-4),(-1,3,4),(1,-2,-3)]:} then show that, p^(2)=p .

If A={:[(1,2,5),(-1,3,-4)]:} and B={:[(3,-2,1),(0,-1,4),(5,2,-1)]:}, show that, (AB)^(T)=B^(T)A^(T) where A^(T) is the transpose of A.

If A={:((3,2),(3,3))and B={:((1,-2/3),(-1,1)) show that AB=I_(2) where I_(2) is the unit matrix of order 2.

If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)] and C=[(-1,-2,-2),(2,1,2),(2,2,3)] then find the value of tr. (A+B^(T)+3C) .

Show that, the matrix A = [(1,2,2),(2,1,2),(2,2,1)] satisfies the equation A^(2) - 4A - 5I_(3) = 0 and hence find A^(-1) .

Show that , A^(-1) = (1)/(3) [(-1,2,-2),(-2,1,-2),(2,2,1)] is a proper orthogonal matrix.

If A={:((1,2),(-1,-2))and B={:((-1,3),(-3,1)). then show that, (A+B)^(2)ne A^(2)+2AB+B^(2).