Home
Class 12
MATHS
Let, P=({:(cos""pi/4, -sin""pi/4),(sin""...

Let, `P=({:(cos""pi/4, -sin""pi/4),(sin""pi/4, cos""pi/4):}) " and " x=({:(1/sqrt(2)),(1/sqrt(2)):})`. Then `P^(3)X` is equal to-

A

`({:(0),(1):})`

B

`({:(-1/sqrt(2)),(1/sqrt(2)):})`

C

`({:(-1),(0):})`

D

`({:(-1/sqrt(2)),(-1/sqrt(2)):})`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2014|2 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2015|5 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2012|4 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos

Similar Questions

Explore conceptually related problems

Evaluate: "sin"pi/4"cos"pi/(12)+"cos"pi/4"sin"pi/(12)

int_(0)^((3pi)/(4))(sinxdx)/(1+cos^(2)x)=(pi)/(4)+tan^(-1)((1)/(sqrt(2)))

Knowledge Check

  • Let Q=({:(cos""pi/4,-sin""pi/4),(sin""pi/4, cos""pi/4):}) and X=({:(1/sqrt(2)),(1/sqrt(2)):}) then Q^(3)X is equal to

    A
    `({:(0),(1):})`
    B
    `({:(-1/sqrt(2)),(1/sqrt(2)):})`
    C
    `({:(-1),(0):})`
    D
    `({:(-1/sqrt(2)),(-1/sqrt(2)):})`
  • The least positive integer n such that ({:(cos""((pi)/(4)),sin""((pi)/(4))),(-sin""((pi)/(4)),cos""((pi)/(4))):})^n is an identity matrix of order 2 is

    A
    4
    B
    8
    C
    12
    D
    16
  • The value of int_(-(pi)/(4))^((pi)/(4)) x^(3) sin^(4) x dx is equal to -

    A
    `(pi)/(4)`
    B
    0
    C
    `(pi)/(3)`
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    Prove that : "sin"(pi)/(3) "tan"(pi)/(6) +"sin"(pi)/(2) "cos"(pi)/(3) =2 "sin"^(2)(pi)/(4) .

    sin ^(2)(pi/6) + cos ^(2)(pi/3) - tan ^(2)(pi/4) =- 1/2

    cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

    Prove that, cos^(2) (pi/4) + sin^(2) (3pi/4) + sin^(2) (5pi/4) + sin^(2)(7pi/4) = 2 .

    sin ^(-1) "" (1)/(sqrt(5))+cot ^(-1) 3= (pi)/(4)