Home
Class 12
MATHS
Show that |{:(1+a^(2)-b^(2),,2ab,,-2...

Show that
`|{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)`

A

0

B

`(1+a^(2)+b^(2))`

C

`(1+a^(2)+b^(2))^(2)`

D

`(1+a^(2)+b^(2))^(3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2014|2 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2015|5 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2012|4 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))| is equal to

By using properties of determinants. Show that: |1+a^2-b^2; 2ab; -2b: 2ab;1-a^2+b^2; 2a: 2b;-2a;1-a^2-b^2|=(1+a^2+b^2)^3

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

prove that , |{:(2ab,a^2,b^2),(a^2,b^2,2ab),(b^2,2ab,a^2):}|=-(a^3+b^3)^2

Factorise : 1-a^(2)+2ab-b^(2)

Show that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2)

((a^(2)b^(-2))/(a^(-2)b^(2)))^(3)xx((ab^(-1))/(a^(-1)b))^(-2)

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Factorise : (x-1)^(2)a^(2)+2(x^(2)+1)ab+(x+1)^(2)b^(2)

If a = (sqrt5 + 1)/(sqrt5 + 1) and b = (sqrt5 -1)/(sqrt5 + 1) , then find the value of (a) (a^(2) + ab + b^(2))/(a^(2) - ab + b^(2)) (b) ((a -b)^(3))/((a + b)^(3)) (c) (3a^(2) + 5ab + b^(2))/(3a^(2) - 5ab + b^(2)) (d) (a^(3) + b^(3))/(a^(3) - b^(3))