Home
Class 12
MATHS
If I(1)=int e^(x) cos x dx and I(2)=int ...

If `I_(1)=int e^(x) cos x dx` and `I_(2)=int e^(x) sin x dx`, then the value of `I_(1)+I_(2)` is-

A

`-e^(x) sin x+c`

B

`-e^(x) cos x+c`

C

`e^(x) sin x+c`

D

`e^(2) cos x+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Questions|12 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|39 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos

Similar Questions

Explore conceptually related problems

int e^(x) cos^(2)x dx

int e^(x)sin x sin2x dx

int e^(x)(cos x-sin x) dx

If I_(1)=int sin^(-1)x dx and I_(2)=int sin^(-1) sqrt(1-x^(2)) dx then -

If I_(m)=int_(1)^(e )(log_(e)x)^(m)dx , then the value of (I_(m)+mI_(m-1)) is -

int e^(x)cos^(2) (e^(x))dx

If f(x) =(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx , and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is

If I_(1)=int_(e )^(e^(2)) (dx)/(log x) and I_(2)= int_(1)^(2)(e^(x))/(x)dx , then which of the following is correct ?

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

If I_(n)=int_(0)^(1)(1-x^(5))^(n)dx , then the value of (55)/(8)((I_(10))/(I_(11))) is equal to-