Home
Class 12
MATHS
int (e^(x))/(x)(xlogx+1)dx...

`int (e^(x))/(x)(xlogx+1)dx`

Text Solution

Verified by Experts

The correct Answer is:
`e^(x)logx+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|39 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos

Similar Questions

Explore conceptually related problems

int (e^(x))/(x)(x log x+1)dx

Evaluate: int e^x/x(x log x+1)dx

int (e^(x))/(1+e^(x))dx

Evaluate the follow integrals : int(e^(x)-1)/(e^(x)+1)dx

int(e^(2x))/(e^(x)+1)dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

int e^(x) sinx dx

Prove that, int (e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int (e^(x))/(x)dx .

int e^(x)((1)/(x)-(1)/(x^(2)))dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c