Home
Class 12
MATHS
int e^(x)((1)/(x)-(1)/(x^(2)))dx...

`int e^(x)((1)/(x)-(1)/(x^(2)))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(e^(x))/(x)+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|39 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos

Similar Questions

Explore conceptually related problems

int e^((1)/(x))cdot(1)/(x^(2))dx

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int e^(x)((1-x)/(1+x^(2)))^(2)dx

int e^(x).(x^(2)+1)/((x+1)^(2))dx

The value of int e^(-(1)/(x)) cdot (1)/(x^(2)) dx is-

int (e^(cot^(-1)x))/(1+x^(2))dx

int(e^(x)(1+x^(2)))/((1+x)^(2))dx

int (e^(x))/(x)(xlogx+1)dx

Prove that, int (e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int (e^(x))/(x)dx .

int_(1)^(2)((x^(2)-1)/(x^(2)))e^(x+(1)/(x))dx=e^((5)/(2))-e^(2)