Home
Class 12
MATHS
int e^(x)(tanx+logsecx)dx...

`int e^(x)(tanx+logsecx)dx`

Text Solution

Verified by Experts

The correct Answer is:
`e^(x)log|secx|+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|39 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos

Similar Questions

Explore conceptually related problems

int e^(x) sinx dx

int e^(2-3x)dx

If int e^x (tanx - log cos x) dx = f(x) log sec x then range of f(x) is

int (e^(x))/(x)(xlogx+1)dx

inte^(tanx)(secx-sinx)dx"is equal to"

int x e^(x) sinx dx

The value of int e^(x log a)*e^(x)dx is equal to -

int e^(x)cos^(2) (e^(x))dx

Integrate : int x tanx sec^(2)x dx

Evaluate : int_1^2 (e^(x^2))dx=a , then find the value of int_e^(e^4)root2(log_ex)dx