Home
Class 12
MATHS
If u=inte^(ax)cos bx dx and v=int e^(ax)...

If `u=inte^(ax)cos bx dx` and `v=int e^(ax)sinbx dx`, show that,
`(a^(2)+b^(2))(u^(2)+v^(2))=e^(2ax)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|39 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos

Similar Questions

Explore conceptually related problems

If u=inte^(ax)cos bx dx and v=int e^(ax)sinbx dx , show that, "tan"^(-1)(v)/(u)+"tan"^(-1)(b)/(a)=bx .

int e^(x) cos^(2)x dx

int e^(2-3x)dx

int_(2)^(3)e^(2x)dx

IF y=e^(ax)sin bx , then prove that, (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0

Integrate : int e^(2x) cos3x dx

int_(0)^(1)e^(2x)e^(e^(x) dx

int (ax^2+bx+c)dx =

If y = e^u and u = f(x), show that, (d^2y)/(dx^2) = e^u [(d^2u)/(dx^2) + ((du)/(dx))^2] .

If y=e^u and u=f(x) , show that, (d^2y)/(dx^2)=e^u[(d^2u)/(dx^2)+((du)/dx)^2]