Home
Class 12
MATHS
If u=inte^(ax)cos bx dx and v=int e^(ax)...

If `u=inte^(ax)cos bx dx` and `v=int e^(ax)sinbx dx`, show that,
`"tan"^(-1)(v)/(u)+"tan"^(-1)(b)/(a)=bx`.

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|39 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos

Similar Questions

Explore conceptually related problems

If u=inte^(ax)cos bx dx and v=int e^(ax)sinbx dx , show that, (a^(2)+b^(2))(u^(2)+v^(2))=e^(2ax)

int_(0)^(1)x(tan^(-1)x)^(2)dx

int (ax^2+bx+c)dx =

int (dx)/(a+bx)

int(x)/(a+bx)dx

int ("tan"x)/(1 + tan x )dx

int (tan x)/(log (cos x))dx

Evaluate inte^(ax)sinbx dx and int e^(ax)cosbx dx by integrating each of them only once by parts.

If y=e^(ax)cos bx , Then find [(d^(2)y)/(dx^(2))]_(x=0)

int (tan^(-1)x dx)/((1+x^(2))^((3)/(2))