Home
Class 12
MATHS
Repeated application of intergration by ...

Repeated application of intergration by parts gives us, the reduction formula if the integrand is dependent on a natural number n.
If `int(cos^(m)x)/(sin^(n)x)dx=(cos^(m-1)x)/((1-n)sin^(n-1)x)+A int (cos^(m-2)x)/(sin^(n-2)x)dx+c`, then A is equal to-

A

`(m)/(m+n)`

B

`(m-1)/(m+n)`

C

`(m)/(m+n-1)`

D

`(m-1)/(m-n)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Matrix Match Type|2 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos

Similar Questions

Explore conceptually related problems

int (cos^(5)x)/(sin x)dx

int(cos x)/(sqrt(1+sin x))dx

We can derive different reduction formulas by using integration by parts. If int cosec^(n)x dx=(-cosec^(n-2)x cotx)/(n-1)+A int cosec^(n-2)x dx , then A is equal to-

int (x^(2)dx)/((x sin x+cos x)^(2))

int (x^(2)dx)/((x cos x-sin x)^(2))

int ((sin x+ cos x)dx)/(sin (x-a))

I=int((sin^8x-cos^8x))/(1-2sin^2xcos^2x)dx is equal

int (sin x+ x cos x )/(x sin x)dx