Home
Class 12
MATHS
Prove that, int(2)^(e)[(1)/(logx)-(1)/...

Prove that,
`int_(2)^(e)[(1)/(logx)-(1)/((logx)^(2))]dx=e-(2)/(log2)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e)(logx)^(2)dx

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(1)^(e)(dx)/(x(1+logx)^(2))

int_(e)^(e^(2))(logxdx)/((1+logx)^(2))=(e)/(6)(2e-3)

Prove that, int_(2)^(3)(dx)/((x-1)sqrt(x^(2)-2x))=(pi)/(3)

Prove that: int_(-2)^(2)|1-x^(2)|dx=4

int_(2)^(3)e^(2x)dx

Prove that, int_(2)^(3)(sqrt(x)dx)/(sqrt(x)+sqrt(5-x))=(1)/(2)

Prove that, int_(-pi)^(pi)(xe^(x^(2)))/(1+x^(2))dx=0

Prove that, int_(0)^(2pi)(cosx)/(1+sin^(2)x)dx=0