Home
Class 12
MATHS
Prove that, int(0)^((pi)/(2))(sqrt(tan...

Prove that,
`int_(0)^((pi)/(2))(sqrt(tanx)+sqrt(cotx))dx=sqrt(2)pi`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt(2)pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int sqrt(cotx)dx

int_(0)^((pi)/(2))(sqrt(cotx)dx)/(sqrt(cotx)+sqrt(tanx))

int_(0)^((pi)/(2))log(tanx)dx=0

Prove that I =int_(0)^(pi//2)(sqrt(secx))/(sqrt("cosec"x)+sqrt(secx))dx =pi/4

int_(0)^((pi)/(2))(sqrt(sinx)dx)/(sqrt(sinx)+sqrtcosx)

int_(0)^((pi)/(6))(sqrt(3 cos 2x-1))/(cos x)dx

int_(0)^(pi)(sqrt(2)xdx)/(sqrt(2)+sin x)

Evaluate: int_(0)^((pi)/(2))(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

Evaluate: int(sqrt(tanx)-sqrt(cotx))dx