Home
Class 12
MATHS
If f(x)=int(1)^(x)(logt)/(1+t)dt, show t...

If `f(x)=int_(1)^(x)(logt)/(1+t)dt`, show that, `f(x)+f((1)/(x))=(1)/(2)(logx)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)(logx)^(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

f(x)=int_1^xlogt/(1+t+t^2)dt (xge1) then prove that f(x) =f(1/x)

If f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt , where xgt0 , find the value of f(x)+f((1)/(x)) and hence show that, f(e)+f((1)/(e))=(1)/(2) .

If f(x)=log_e.(1+x)/(1-x) , show that f((2x)/(1+x^2))=2f(x) .

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=(4^x)/(4^x+2), then show that f(x)+f(1-x) =1.

If f(x)=cos(logx) ,show that f(x)f(y)-1/2 [ f (x/y) + f(xy) ]=0

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-

If f(x)=a+bx+cx^(2) , show that, int_(0)^(1)f(x)dx=(1)/(6)[f(0)+4f((1)/(2))+f(1)]