Home
Class 12
MATHS
If f(x)=int(1)^(x)(log(e)t)/(1+t)dt, whe...

If `f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt`, where `xgt0`, find the value of `f(x)+f((1)/(x))` and hence show that, `f(e)+f((1)/(e))=(1)/(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

f(x)=int_1^x(tan^(-1)(t))/t dt \ AAx in R^+, then find the value of f(e^2)-f(1/(e^2))

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then find the value of f(log_(e)2) is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x) = cos(log_e x) , then find the value of f(x) cdot f(y) - 1/2[f(x/y) + f(xy)]

If f(x)=int_(-1)^x |t|dt , then for any xge0,f(x) is equal to