Home
Class 12
MATHS
Prove that, int(0)^(2pi)(xsin^(2n)x)/(si...

Prove that, `int_(0)^(2pi)(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=pi^(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`pi^(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

int_(0)^((pi)/(2))(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

Prove that, int_(0)^(2pi)(cosx)/(1+sin^(2)x)dx=0

Evaluate int_(0)^(pi/2)(cos^(4)x)/(sin^(4)x+cos^(4)x)dx

Show that, int_(0)^((pi)/(2))(sin2x dx)/(sin^(4)x+cos^(4)x)=(pi)/(2)

int_(0)^(pi/2)(cos^(3/2)x dx)/(sin^(3/2)x+cos^(3/2)x)

Prove that, int_(-pi)^(pi)(xe^(x^(2)))/(1+x^(2))dx=0

int_(0)^(2pi)sin^(4).(x)/(2)cos^(5).(x)/(2)dx=0

evaluate: int_0^(pi/2) (cos^(3/2)x)/(sin^(3/2)x+cos^(3/2)x)dx

Prove that, int_(0)^((pi)/(2))cos^(n)x cos nx dx=(pi)/(2^(n+1)) .