Home
Class 12
MATHS
Prove that, int(0)^(2pi)(cosx)/(1+sin^...

Prove that,
`int_(0)^(2pi)(cosx)/(1+sin^(2)x)dx=0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(cosxdx)/(1+sin^(2)x)

Prove that, int_(0)^(2pi)(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=pi^(2) .

Prove that, int_(-pi)^(pi)(xe^(x^(2)))/(1+x^(2))dx=0

Evaluate : int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

Evaluate int_0^(pi/2)(cosx)/(1+sinx)^2dx

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)/x dx

Prove that, int_(0)^((pi)/(2))cos^(n)x cos nx dx=(pi)/(2^(n+1)) .

int_(0)^((pi)/(2))(cosx-sinx)/(1+sinxcosx)dx

int_(0)^(pi)(dx)/(3+2sinx+cosx)

Prove that, int_(0)^(pi)log(1+cos x)dx=-pi log2 , given int_(0)^((pi)/(2))log((sin x))dx=(pi)/(2)"log"(1)/(2) .