Home
Class 12
MATHS
Evaluate: int(0)^((pi)/(2))(sqrt(cosx)...

Evaluate:
`int_(0)^((pi)/(2))(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(sqrt(sinx)dx)/(sqrt(sinx)+sqrtcosx)

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

int_(0)^((pi)/(2))(dx)/(1+cosx)

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx

Evaluate: int_(0)^((pi)/(2))(sin^(2)x)/(sinx+cosx)dx

Evaluate of each of the following integrals int_(pi//6)^(pi//3)(sqrt("sin"x))/(sqrt(sinx)+sqrt(cosx))"d"x

int_(0)^((pi)/(2))(dx)/(2+cosx)=(pi)/(3sqrt(3))

Prove that I =int_(0)^(pi//2)(sqrt(secx))/(sqrt("cosec"x)+sqrt(secx))dx =pi/4

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -

int_(0)^((pi)/(2))(cosx-sinx)/(1+sinxcosx)dx