Home
Class 12
MATHS
int(0)^((pi)/(4))logtan2xdx...

`int_(0)^((pi)/(4))logtan2xdx`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If u_(n)=int_(0)^((pi)/(4))tan^(n)xdx , show that, u_(n)+u_(n-2)=(1)/(n-1)(ngt1) , hence find u_(5)

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((pi)/(2))sinxsin2xdx

int_(0)^((pi)/(4))xcosxdx

int_(0)^((pi)/(4))sec^(4)xdx

int_(0)^((pi)/(2))sin^(3)xdx

The value of int_(0)^((pi)/(2))sin^(2)xdx is-

By applying the result int_(0)^((pi)/(2))f(cosx)dx=int_(0)^((pi)/(2))f(sinx)dx , evaluate int_(0)^((pi)/(2))sin^(2)xdxandint_(0)^((pi)/(2))cos^(2)xdx .

The value of int_(0)^((pi)/(4))tanthetad theta is-

Evaluate: int_(0)^((pi)/(2))cos^(2)xdx