Home
Class 12
MATHS
If f(x) and g(x) be continuous in the in...

If f(x) and g(x) be continuous in the interval [0, a] and satisfy the conditions `f(x)=f(a-x)` and `g(x)+g(a-x)=a`, then show that `int_(0)^(a)f(x)g(x)dx=(a)/(2)int_(0)^(a)f(x)dx`. Hence find the value of `int_(0)^(pi)xsinxdx`.

Text Solution

Verified by Experts

The correct Answer is:
`I=(a)/(2)int_(0)^(a)f(x)dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

Evaluate:If f(a-x)=f(x), then show that int_0^axf(x)dx=a/2int_0^af(x)dx

int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx if-

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n dg(x)+g(a-x)=2, then show that int_0^af(x)g(x)dx=int_0^af(x)dxdot

int_(0)^(2a)f(x)dx is equal to -

If f(x) is an odd function of x, then show that, int_(-a)^(a)f(x)dx=0 .

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

int_(0)^(2a)(f(x)dx)/(f(x)+f(2a-x))=a

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -