Home
Class 12
MATHS
int(0)^(pi)sqrt(1+sinx)dx...

`int_(0)^(pi)sqrt(1+sinx)dx`

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|58 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise EXERCISE 9B ( MULTIPLE CHOICE TYPE QUESTIONS )|6 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(sqrt(sinx)dx)/(sqrt(sinx)+sqrtcosx)

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx

Evaluate int_(0)^(2pi)|sinx|dx .

int_(0)^(pi)(xdx)/(1+sinx)

Show that, int_(0)^(pi)xf(sinx)dx=(pi)/(2)int_(0)^(pi)f(sinx)dx .

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

Prove that, int_(0)^(pi)f(sinx)dx=2int_(0)^((pi)/(2))f(sinx)dx .

Prove that (1+sqrt(2))/2lt int_(0)^(pi//2)(sinx)/x dx lt (pi+2sqrt(2))/4

Evaluate the following : int_(0)^(pi)(dx)/(1+sinx)

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx