Home
Class 12
MATHS
int(0)^(1)ydx where x=cos2y...

`int_(0)^(1)ydx` where `x=cos2y`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|58 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise EXERCISE 9B ( MULTIPLE CHOICE TYPE QUESTIONS )|6 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)y^(2)dx where x=acosthetaandy=bsintheta

int_(a)^(2a)xydx where x^(2)-y^(2)=a^(2)andyge0

int_(-a)^(a)x^(2)ydx where x^(2)+y^(2)=a^(2)andyge0

int_(-1)^(1)xdy where y = sin x

int_(0)^((pi)/(2))y^(2)dx where y = sin x

Evaluate: int_(-5)^(0)f(x)dx" where "f(x)=|x|+|x+2|+|x+5|

int_(0)^(1)cos^(-1)x dx

Let f(x)={{:(int_(0)^(x)|1-t|dt,"where "xgt1),(x-(1)/(2),"where "xle1):} , then

The value of the integral int_(0)^(1) (dx)/( x^(2)+2x cos alpha +1) is equal to -

If x int_(0)^(x)sin(f(t))dx=(x+2)int_(0)^(1)tsin(f(t))dt , where xgt0 , then show that f'(x)cot f(x)+3/(1+x)=0