Home
Class 12
MATHS
Prove that, int(a)^(b)f(a+b-x)dx=int(a)^...

Prove that, `int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx`.

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise EXERCISE 9B ( SHORT ANSWER TYPE QUESTIONS )|16 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise EXERCISE 9B ( LONG ANSWER TYPE QUESTIONS )|17 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise EXERCISE 9B ( MULTIPLE CHOICE TYPE QUESTIONS )|6 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)e^(x)dx

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

int_(a)^(b)x^(2)dx

Prove that int_a^bf(x)dx=int_(a+c)^(b+c)f(x-c)dx , and when f(x) is odd function, int_(-a)^af(x)dx=0

If int_(a)^(b)f(x)dx=int_(a)^(b)phi(x)dx , then-

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx if-

Show : int_(a)^(b)f(kx)dx=(1)/(k)int_(ka)^(kb)f(x)dx

If f(x)is integrable function in the interval [-a,a] then show that int_(-a)^(a)f(x)dx=int_(0)^(a)[f(x)+f(-x)]dx.

Statement-I : The value of the integral int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tanx)) is equal to (pi)/(6) . Statement-II : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx