Home
Class 12
MATHS
int(0)^((pi)/(2))sin2xlog(tanx)dx=0...

`int_(0)^((pi)/(2))sin2xlog(tanx)dx=0`

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( MULTIPLE CORRECT ANSWER TYPE )|5 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( INTEGER ANSWER TYPE )|5 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise EXERCISE 9B ( SHORT ANSWER TYPE QUESTIONS )|16 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

int_(0)^((pi)/(2))log(tanx)dx=0

Find the value of int_(0)^(pi//2)sin2xlogtanxdx .

int_(0)^((pi)/(2))sin^(3)xdx

Show : int_(0)^((pi)/(2))sinxf(sin2x)dx=int_(0)^((pi)/(2))cosxf(sin2x)dx

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((3pi)/(4))sin^(2)xcos^(2)xdx

Prove that, int_(0)^(pi)log(1+cos x)dx=-pi log2 , given int_(0)^((pi)/(2))log((sin x))dx=(pi)/(2)"log"(1)/(2) .

The value of int_(0)^((pi)/(2))sin^(2)xdx is-

Evaluate: int_((pi)/(4))^((pi)/(2))cos2xlog(sinx)dx