Home
Class 12
MATHS
Let f(x)=sin^(4)x-cos^(4)x int(0)^((pi)...

Let `f(x)=sin^(4)x-cos^(4)x`
`int_(0)^((pi)/(2))f(x)dx`=

A

`(3pi)/(16)`

B

`(3pi)/(8)`

C

0

D

`(pi)/(16)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( ASSERTION-REASON TYPE )|2 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( INTEGER ANSWER TYPE )|5 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Show that, int_(0)^((pi)/(2))f(sin2x)sinxdx=sqrt(2)int_(0)^((pi)/(4))f(cos2x)cosxdx

Let f(x)=sinx+2cos^(2)x,(pi)/(4)lexle(3pi)/(4) . Then f attains its-

Knowledge Check

  • Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x . int_(0)^((pi)/(4))(f(x))/(g(x))dx =

    A
    `(1)/(sqrt(2))log(sqrt(2)-1)`
    B
    `(1)/(2)log(sqrt(2)+1)`
    C
    `(1)/(sqrt(2))log(sqrt(2)+1)`
    D
    `(1)/(2)log(sqrt(2)-1)`
  • Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x . intg(x)dx =

    A
    `(3x)/(4)-(cos4x)/(16)+c`
    B
    `(3x)/(4)+(sin4x)/(16)+c`
    C
    `(3x)/(4)-(sin4x)/(16)+c`
    D
    `(3x)/(4)+(sin4x)/(8)+c`
  • If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

    A
    `(pi)/(4)`
    B
    `(pi)/(2)`
    C
    `pi`
    D
    `2pi`
  • Similar Questions

    Explore conceptually related problems

    Statement 1: Let f(x)=sin(cos x) \ i n \ [0,pi/2] . Then f(x) is decreasing in [0,pi/2] Statement 2: cosx is a decreasing function AAx in [0,pi/2]

    Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^(2) .Prove that, int_(0)^(1)f(x)g(x)dx=(1)/(2)(2e-e^(2)-3)

    Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

    If P=int_(0)^(3pi)f(cos^(2)x) dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then -

    Let f_k(x)=1/k(sin^k x+cos^k x) Then f_4(x)-f_6(x) =