Home
Class 12
MATHS
Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin...

Let `f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x`.
`intg(x)dx`=

A

`(3x)/(4)-(cos4x)/(16)+c`

B

`(3x)/(4)+(sin4x)/(16)+c`

C

`(3x)/(4)-(sin4x)/(16)+c`

D

`(3x)/(4)+(sin4x)/(8)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( ASSERTION-REASON TYPE )|2 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( INTEGER ANSWER TYPE )|5 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x . int_(0)^((pi)/(4))(f(x))/(g(x))dx =

int dx/(sin^(4)xcos^(4)x)

int (sin^(2)x)/(cos^(4)x)dx

Let f(x)=sin^(4)x-cos^(4)x int_(0)^((pi)/(2))f(x)dx =

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

Prove : int (sin^(8) x - cos ^(8)x)/(1-2sin^(2) x cos ^(2) x) dx = - 1/2 sin 2x + c

int sin^(4) x cos^(2) x dx

I=int((sin^8x-cos^8x))/(1-2sin^2xcos^2x)dx is equal

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)xcos^(2)x)

Prove that, sin^(4) x + cos^(4) x = 1- 1/2 sin^(2) 2x