Home
Class 12
MATHS
Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin...

Let `f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x`.
`int_(0)^((pi)/(4))(f(x))/(g(x))dx`=

A

`(1)/(sqrt(2))log(sqrt(2)-1)`

B

`(1)/(2)log(sqrt(2)+1)`

C

`(1)/(sqrt(2))log(sqrt(2)+1)`

D

`(1)/(2)log(sqrt(2)-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( ASSERTION-REASON TYPE )|2 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION ( INTEGER ANSWER TYPE )|5 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x . intg(x)dx =

int dx/(sin^(4)xcos^(4)x)

Let f(x)=sin^(4)x-cos^(4)x int_(0)^((pi)/(2))f(x)dx =

int (sin^(2)x)/(cos^(4)x)dx

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

int sin^(4) x cos^(2) x dx

I=int((sin^8x-cos^8x))/(1-2sin^2xcos^2x)dx is equal

int _(0)^((pi)/(4))(sec x dx)/(1+2 sin^(2)x)

int_(0)^((pi)/(2))(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

int cos^(2)x/sin^(4)x dx