Home
Class 12
MATHS
If vec (a)= 2 hat (i) - hat (j) + hat (...

If ` vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) ` , then value of ` vec (a). vec(b) ` is -

A

1

B

3

C

`-3`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
d
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A ( Short answer type questions)|41 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type )|2 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2 hat (i) - hat (j) + 3 hat (k) and vec(b) = 3 hat (i) + hat (j) - 2 hat (k) , find the angle between the vectors (vec(a) + vec(b)) and (vec(a)-vec(b))

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )

Knowledge Check

  • If vec (a) = 2 hat (i) - 3 hat (j) + 4 hat (k) and vec(b) = - 6 hat (i) + 9 hat (j) - 12 hat (k) , then

    A
    `vec(a) bot vec(b)`
    B
    `vec(a) "||"vec(b)`
    C
    angle between the vectors is `cos^(-1). 3/4`
    D
    angle between the vectors is `pi/3`
  • If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

    A
    ` 4 hat (i) - 8 hat (i) - hat (k)`
    B
    `-4hat(j) - hat (j) + hat(k)`
    C
    `4hat(i) - 8hat(j) + hat (k)`
    D
    `-4hat(i) - 8 hat (j) - hat (k)`
  • Similar Questions

    Explore conceptually related problems

    If vec(a) = 3 hat (i) - 2 hat (j) + hat (k) and vec(b) = hat (i) - 3 hat (j) + 4 hat (k) , find vec(a) xx vec (b) and the area of the parallelogram whose adjacent sides are vec (a) and vec (b)

    If vec (a) = 3 hat (i) + 2 hat (j) + 9 hat (k) and vec(b) = hat (i) + lambda hat (j) + 3 hat (k) , then find the value of lambda so that the vectors (vec(a) + vec(b)) and (vec(a) - vec(b)) are perpendicular to each other .

    If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a) xx ( vec(b)+vec(c)) = vec (a) xx vec (b) + vec(a) xx vec(c)

    If vec(a) = 3 hat (i) + 4 hat (j) - hat(k) , vec(b) = hat(i) - 3 hat (j) + 4 hat (k) and vec (c ) = 5 hat (i) - 6 hat (j) + 4 hat (k) , find the vector vec (r ) which is perpendicular to both vec(a) and vec(b) and which satisfies the relation vec(r).vec(c ) = 91

    If vec(a) = hat (i) +hat (j) , vec (b) = hat(i) - hat(j) and vec(c ) = 5 hat (i) + 2 hat (j) + 3 hat(k) , find the value of [ vec(b)vec (c ) vec(a)]

    If vec (alpha ) = - hat (i) + 2 hat (j) + hat (k) , vec(b) = 3 hat(i) + hat (j) + 2 hat (k) and vec(c ) = 2 hat (i) + hat (j) + 3 hat (k) , find [ vec(c ) vec(a) vec(b)]