Home
Class 12
MATHS
The scalar projection of vec(a) = 2 hat ...

The scalar projection of `vec(a) = 2 hat (i) - 3hat(j) + hat (k) ` on ` vec (b) = 3 hat(i) - 6 hat (j) - 2 hat (k) `

A

`22/7`

B

`26/7`

C

`22/(sqrt(14))`

D

`26/(sqrt(14))`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A ( Short answer type questions)|41 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type )|2 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec (a) = 2 hat (i) - 3 hat (j) + 4 hat (k) and vec(b) = - 6 hat (i) + 9 hat (j) - 12 hat (k) , then

Find lambda where projection of vec (a) = lambda hat (i) + hat (j) + 4 hat (k) on vec (b) = 2 hat (i) + 6 hat (i) + 3 hat (k) is 4 unit

If the projection of vec(a) = lamda hat(i) + hat(j) + 4hat(k) " on " vec(b) = 2hat(i) + 6hat(j) + 3hat(k) is 4 units, then find lamda

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

Find the scalar product of the following pair of vectors and the angle between them : vec(a) = 2 hat (i) + 3 hat (j) - 4 hat (k) and vec(b) = hat (i) + 2 hat (j) + hat (k)

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

Find the scalar and vector components of vec(a) in the direction of vec(b) where vec(a) = 3 hat (i) + vec(j) + 3 hat (k) and vec(b) = hat (i) - hat (j) - hat (k)

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )

If vec(alpha ) = hat (i) - 2 hat (j) + 3 hat (k) , vec(beta) = 2 hat (i) - 3 hat (j) + hat(k) and vec(gamma) = 3 hat (i) + hat (j) - 2 hat (k) , find vec(alpha) . (vec(beta)xx vec (gamma)) .