Home
Class 12
MATHS
If the vectors vec(a) = 3 hat (j) + 6 ha...

If the vectors `vec(a) = 3 hat (j) + 6 hat (k) and vec (b) = - 2 hat (i) + m hat (j) - 3 hat (k) ` are perpendicular to each other , then the value of m is -

A

12

B

`-6`

C

`-12`

D

6

Text Solution

Verified by Experts

The correct Answer is:
d
Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A ( Short answer type questions)|41 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type )|2 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If the vectors 3 hat (i) - 2 hat (j) + m hat (k) and - 2 hat (i) + hat (j) +4 hat (k) are perpendicular to each other , find the value of m

If vec (a) = 2 hat (i) - 3 hat (j) + 4 hat (k) and vec(b) = - 6 hat (i) + 9 hat (j) - 12 hat (k) , then

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

If vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec(b) = hat (i) + hat (j) - hat (k) and |vec (a) xx vec(b)| = sqrt(13 m ) then the value of m is -

if vectors 3 hat i - 2 hat j + m hat k and - 2 hat i+ hat j+4 hat k are perpendicular to each other , find the value of m

The scalar projection of vec(a) = 2 hat (i) - 3hat(j) + hat (k) on vec (b) = 3 hat(i) - 6 hat (j) - 2 hat (k)

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

Let vec(a) = hat(i) + hat(j) - 3 hat(k) and vec(b) = 2 hat(i) + hat(j) + hat(k) Statement - I: Vectors vec(a) and vec(b) are perpendicular to each other Statement - II: vec(a) . vec(b) = 0

If vec (a) = 3 hat (i) + 2 hat (j) + 9 hat (k) and vec(b) = hat (i) + lambda hat (j) + 3 hat (k) , then find the value of lambda so that the vectors (vec(a) + vec(b)) and (vec(a) - vec(b)) are perpendicular to each other .