Home
Class 12
MATHS
If vec (a) = 2 hat (i) - 2 hat (j) + hat...

If `vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec(b) = hat (i) + hat (j) - hat (k) and |vec (a) xx vec(b)| = sqrt(13 m )` then the value of m is -

A

3

B

4

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A ( Short answer type questions)|41 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type )|2 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec(a) = 3 hat (i) - 2 hat (j) + hat (k) and vec(b) = hat (i) - 3 hat (j) + 4 hat (k) , find vec(a) xx vec (b) and the area of the parallelogram whose adjacent sides are vec (a) and vec (b)

If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

If vec (a) = -2 hat (i) - 2 hat (j) + 4 hat (k) , vec (b) = - 2 hat(i)+ 4 hat (j) - 2 hat (k) and vec(c) = 4 hat (i) - 2 hat (j) - 2 hat (k) , find vec(a).(vec(b)xx vec (c )) and interpret the result

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a) xx ( vec(b)+vec(c)) = vec (a) xx vec (b) + vec(a) xx vec(c)

If the vectors vec(a) = 3 hat (j) + 6 hat (k) and vec (b) = - 2 hat (i) + m hat (j) - 3 hat (k) are perpendicular to each other , then the value of m is -

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

If vec (alpha ) = - hat (i) + 2 hat (j) + hat (k) , vec(b) = 3 hat(i) + hat (j) + 2 hat (k) and vec(c ) = 2 hat (i) + hat (j) + 3 hat (k) , find [ vec(c ) vec(a) vec(b)]

If vec(alpha ) = hat (i) - 2 hat (j) + 3 hat (k) , vec(beta) = 2 hat (i) - 3 hat (j) + hat(k) and vec(gamma) = 3 hat (i) + hat (j) - 2 hat (k) , find vec(alpha) . (vec(beta)xx vec (gamma)) .

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )