Home
Class 12
MATHS
If a vector vec(v) is such that 2 vec(...

If a vector `vec(v)` is such that ` 2 vec(v) + vec(v) xx [ hat(i) + 2 hat(j)] = 2 hat(i) + hat(k)and |vec(v)| = 1/3 sqrt(m) `, then m is equal to -

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Matrix Match Type )|2 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Comprehension Type )|6 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type )|5 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec(b) = hat (i) + hat (j) - hat (k) and |vec (a) xx vec(b)| = sqrt(13 m ) then the value of m is -

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

If the vectors vec(a) = 2 hat (i) - lambda hat(j) + 3 hat (k), vec(b) = 3 hat (i) + 2 hat (k) - mu hat (k) and vec(c ) = hat (i) + hat (j) + hat (k) are coplanar , find mu in terms of lambda

Let a three dimensional vector vec V satisfy the condition, 2 vec V+ vec Vxx( hat i+2 hat j)=2 hat i+ hat kdot If 3| vec V|=sqrt(m)dot Then find the value of mdot

If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )

Find the projection of vector (vec(b)+vec (a )) on vector vec(a) where vec(a) = 2 hat (i) - hat (j) + 2 hat (k) and vec(b) = hat(j) + 2 hat (k)

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a) xx ( vec(b)+vec(c)) = vec (a) xx vec (b) + vec(a) xx vec(c)