Home
Class 12
MATHS
If vec(a) = 3 alpha hat(i) + 2hat(j) - ...

If ` vec(a) = 3 alpha hat(i) + 2hat(j) - 3 hat (k) , vec(b) = hat(i) + 6 alpha hat(j) - 2 hat(k) and hat (c ) = 2 hat(i) - 3 alpha hat(j) + hat(k) ` be such that `{(vec(a) xx vec(b))xx (vec(b) xx vec(c)) } xx (vec(c) xx vec(a)) = vec(O)` , then the value of `9 alpha ` is -

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Matrix Match Type )|2 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Comprehension Type )|6 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type )|5 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a) xx ( vec(b)+vec(c)) = vec (a) xx vec (b) + vec(a) xx vec(c)

If vec (alpha ) = - hat (i) + 2 hat (j) + hat (k) , vec(b) = 3 hat(i) + hat (j) + 2 hat (k) and vec(c ) = 2 hat (i) + hat (j) + 3 hat (k) , find [ vec(c ) vec(a) vec(b)]

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find (vec(a) + vec(b)) xx (vec(b)- vec(c ))

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )

If vec(alpha ) = hat (i) - 2 hat (j) + 3 hat (k) , vec(beta) = 2 hat (i) - 3 hat (j) + hat(k) and vec(gamma) = 3 hat (i) + hat (j) - 2 hat (k) , find vec(alpha) . (vec(beta)xx vec (gamma)) .

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find (vec(a) - 2 vec(b)) xx vec(c)

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find vec(c ) xx (-vec(a))

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find vec(a) xx vec(b)

If vec (a) = -2 hat (i) - 2 hat (j) + 4 hat (k) , vec (b) = - 2 hat(i)+ 4 hat (j) - 2 hat (k) and vec(c) = 4 hat (i) - 2 hat (j) - 2 hat (k) , find vec(a).(vec(b)xx vec (c )) and interpret the result

If vec(a) = hat(i) - hat(j) + 2hat(k) , vec(b) = hat(i) +hat(j) +hat(k) and vec(c ) = 2 hat(i) - hat(j) + hat(k) find the vector vec (r ) satisfying the relations , vec(a) . vec(r ) = 1 , vec(b). vec(r ) = 2 and vec(c ) . vec (r ) = 5