Home
Class 12
MATHS
The line vec r = veca+lambda vec b will ...

The line `vec r = veca+lambda vec b` will not meet the plane `vecr. vecn= vecq`, if___

A

`vecb. vecn=0, veca. vecn=q`

B

`vecb.vecn ne 0, veca.vecn ne q`

C

`vecb.vecn = 0, veca.vecn ne q`

D

`vecb.vecn ne 0, veca.vecn = q`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PLANE

    CHHAYA PUBLICATION|Exercise EXERCISE 5A (Vary Short answer Type question)|15 Videos
  • PLANE

    CHHAYA PUBLICATION|Exercise EXERCISE 5A (Short answer Type question)|15 Videos
  • PLANE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination( E Assertion - Reason Type )|2 Videos
  • PERMUTATION AND COMBINATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams E Assertion -Reason Type|2 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos

Similar Questions

Explore conceptually related problems

Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q

State the condition for which the line vecr=veca+lambda vecb is parallel to the plane vecr. vecn=d . Prove that the line vecr=(hati+ hatj)+ lambda (2 hati+ hat j+4 hatk) is parallel to the plane vec r.(-2 hati+ hatk)=5 . Also , find the distance between the line and the plane.

Statement 1: Line (x-1)/1=(y-0)/2=(z+2)/(-1) lies in the plane 2x-3y-4z-10=0. Statement 2: if line vec r= vec a+lambda vec b lies in the plane vec r. vec c=n (where n is scalar),then vec b. vec c=0. (a) Both the statements are true, and Statement 2 is the correct explanation for Statement 1. (b) Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1. (c)Statement 1 is true and Statement 2 is false. (d) Statement 1 is false and Statement 2 is true.

Distance of the point P( vec p) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

The lines vec r= vec a+lambda( vec bxx vec c)a n d vec r= vec b+mu( vec cxx vec a) will intersect if a. vec axx vec c= vec bxx vec c b. vec adot vec c= vec bdot vec c c. bxx vec a= vec cxx vec a d. none of these

The intercept made by the plane vec r. vecn=q on the x axis is __

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The plane vec rdot vec n=q will contain the line vec r= vec a+lambda vec b , if a. b.n!=0,a.n!=q b. b.n=,a.n!=q c. b.n=0,a.n=q d. b.n!=0,a.n=q

If ( vec axx vec b)xx( vec cxx vec d) . ( vec axx vec d)=0 , then which of the following may be true? (a) vec a , vec b , vec ca n d vec d are necessarily coplanar (b) vec a lies in the plane of vec ca n d vec d (c) vec b lies in the plane of vec aa n d vec d (d) vec c lies in the plane of vec aa n d vec d

Statement 1: Lines vec r= hat i+ hat j- hat k+lambda(3 hat i- hat j)a n d vec r=4 hat i- hat k+mu(2 hat i+3 hat k) intersect. Statement 2: vec bxx vec d=0 , then lines vec r= vec a+lambda vec ba n d vec r= vec c+lambda vec d do not intersect.